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Local-functional theory of critical adsorption
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Local-functional methods are applied to critical adsorption in three-dimensional Ising-like systems. The
universal order-parameter-profile scaling functions,P6(x), along the critical isochore (1) and phase boundary
(2), are calculated along with their associated universal amplitudes. Good agreement is found with the results
of Monte Carlo simulations. General properties ofP6(x) for small and large scaled distance,x, are elucidated.
An order-parameter scaling function,Pc(x), for critical adsorption along thecritical isothermis introduced and
calculated.
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There has been much recent interest in the effects of
limiting boundaries on systems near their bulk critical poi
of which the phenomenon ofcritical adsorptionis an impor-
tant example. Consider, for instance, a uniaxial~Ising! ferro-
magnet~or a system in the equivalent universality class su
as a binary fluid, etc.! against a wall containing a symmetry
breaking fieldh1.0. Such a boundary tends to cause t
order parameter~e.g., magnetization,m, or fluid density,r)
to increase over a distance of about the bulk correla
length,j, from the wall. In a seminal paper, Fisher and
Gennes@1# predicted that on approaching the bulk critic
point, wherej→`, the order-parameter profile at large di
tances from the wall attains a characteristic scaling form
volving bulk critical exponents which can be described b
universalscaling function, a situation referred to as critic
adsorption. This prediction has stimulated much experim
tal work @2# and theoretical~including Monte Carlo! analysis
@3–8#.

We start by describing, in magnetic language, the m
quantities of interest in critical adsorption. Letm(z) be the
magnetization profile in the semi-infinite sample at a perp
dicular distance ofz from the wall with the bulk magnetiza
tion, mb(t,h), given by mb(t,h)ª lim

z→`
m(z), where t

ª(T2Tc)/Tc , T is the temperature,Tc is its critical value,
and h is the applied bulk magnetic field. Near the critic
point ~both utu and uhu small!, mb(t,0)'Butub for t→02

~phase boundary!; mb(t,0)50 for all t.0 ~critical isochore!;
and mb(0,h)'(uhu/D)1/dsgnh for h→0 ~critical isotherm!.
This then defines in standard notation the critical expone
b andd, and amplitudesB andD. Along the phase boundar
and critical isochore, Fisher and de Gennes@1# proposed the
following scaling law:

m~z;t,h50!'ButubP6~z/j! as z→`, t→06, ~1!

where, throughout,j5j(t,h) is the true correlation length,
with j(t,0)'j0

6utu2n ast→06, and, with this choice of nor-
malization, P6(x) are universal scaling functions. Also of
interest is the Gibbs adsorption,G(t,h), defined by

G~ t,h!ªE
0

`

@m~z;t,h!2mb~ t,h!# dz. ~2!
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For dimensiond,4, wheren.b, the adsorption diverges o
approach to the critical point likeG(t,0)'G6utub2n as t
→06 and for d>4 ~mean field theory!, wheren5b, one
finds G(t,0); lnutu21 as t→0.

SinceP6(x) are universal, various amplitudes extract
from P6(x) at large and smallx are also universal as well a
integrals involvingP6(x). Thus, withP6(x)'c6 x2b/n as
x→0 and P6(x)2P6(`)'P6,1

` e2x as x→` @where
clearly P1(`)50 andP2(`)51# we find universal num-
bersc6 andP6,1

` . In addition, the integrals@6#

g6ª~n2b!E
0

`

@P6~x!2P6~`!#dx ~3!

are also universal and related to the adsorption amplitu
G6 via g65(n2b)G6 /Bj0

6 . Finally, we have the univer-
sal adsorption amplitude ratioRFªG1 /G2 .

One can similarly define universal quantities alo
the critical isotherm. Thus, we have m(z;t50,h)
'mb(0,h)Pc(z/j) as z→`,h↘01, where j(0,h)
'jcuhu2n/bd @9# and the properties of the universal scalin
function, Pc(x), for large and smallx, i.e., Pc(x)'cc x2b/n

asx→0 andPc(x)21'Pc,1
` e2x asx→`, defines the uni-

versal amplitudescc andPc,1
` . Furthermore, one can define

universal number,gc , through an expression identical to E
~3! except that the integrand is replaced byPc(x)21. Along
the critical isotherm, the Gibbs adsorption diverges li
G(0,h)'Gcuhu(b2n)/bd as h↘01 for d,4 and G(0,h)
; lnuhu21 for d>4. ThenonuniversalamplitudeGc is related
to gc via gc5(n2b)D1/dGc /jc .

Thus, for critical adsorption we have a number of unive
sal quantities amenable to experimental and theoretical
vestigation. It is well established that mean field theo
(d>4) predicts @3,6# that P1(x)5A2 cosechx,P2(x)
5coth(x/2), with c15A2, c252, P1,1

` 52A2, and
P2,1

` 52, and for the adsorption quantities we ha
g151/A2, g251, andRF51 ~strictly speakingg6 are only
defined atd54 in the sense of the limitd→42). Along the
critical isothermthe results of mean field theory appear n
to have been presented before but these are given as
©2001 The American Physical Society02-1
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Pc~x!215
3A2

sinh@x1sinh21~A2!#2A2
~4!

with cc5A6, Pc,1
` 56A2(A32A2), andgc5A3/2.

The purpose of this Rapid Communication is to go b
yond mean field theory and present the results of exten
calculations which provide a complete description of critic
adsorption at the experimentally important dimension od
53. The pioneering analysis of experimental data by Liu a
Fisher@3#, based on approximants, was followed by furth
analysis@6–8# of other experiments. Renormalization grou
~RG! studies of a semi-infinitef4 field theory@4,5#, carried
out to linear order ineª42d ~i.e., one loop! and extrapo-
lated toe51, provide the onlypurely theoreticalpredictions
of P6(x) ~and associated amplitudes! at d53 apart from
Monte Carlo~MC! simulations of thed53 Ising model@5#.

In this paper we use a method based on local free-en
functionals of the type introduced by Fisher and Upton@10#.
These are functionals ofm(z), so constructed to incorporat
nonclassicalcriticality as appropriate for dimensionsd,4.
The method isnonperturbativeand can be applied directly t
d53 without extrapolating, which is an important advanta
over field-theoreticale expansions. However, one can al
use these functionals to generate expansions ine, thus pro-
viding a useful cross-check with field theory. Indeed, resu
of previous applications were found to compare very w
with field-theoreticale expansions@11,12# ~usually within
about 1% for the coefficient of the order-e term!. Also, for
Casimir-type problems, local-functional calculations appl
directly to d52 gave results in excellent agreement w
those obtained from conformal invariance@12,13#. The
method is relatively easy to implement making it applica
to situations which appear intractable when using other
oretical techniques.

The local-functional method@10# starts from the assertio
thatm(z) minimizes the following~approximate! functional:

F@m#5E
0

`

A~m,ṁ;t,h!dz1 f 1~m1 ;h1 , . . . !, ~5!

whereṁªdm/dz andm1ªm(z50). The surface contribu
tion incorporates the symmetry-breaking surface fieldh1 via
f 1(m1 ;h1 , . . . )52h1m11 . . . as required for critical ad
sorption. The integrandA(•) contains onlybulk quantities
and we use the choice considered in Ref.@10#,

A~m,ṁ;t,h!5$G@L~m;t,h!ṁ#11%W~m;t,h!, ~6!

with

W~m;t,h!ªF~m;t !2F~mb ;t !2h ~m2mb!, ~7!

where F(m;t) is the bulk Helmholtz free energy densit
Note that the equation]W/]mumb

50 gives the bulk equation

of state. It is required that the combinationṁL(m) be scale
free which is satisfied ifL(m) takes the form

L~m;t,h!ªj~m;t !/A2x~m;t !W~m;t,h!, ~8!
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wherej(m;t) and x(m;t) are, respectively, the bulk corre
lation length and susceptibility of the homogeneous sys
at (m,t). The functionG(x) must beeven in x with G(0)
50 and is required to satisfy several desiderata as set o
Refs. @10,12#. What is quite remarkable though, is that f
semi-infiniteproblems the specific functional form ofG(x)
does not enter into any expressions obtained from minim
ing Eq. ~5! @10#.

Mean field theory (d.4) follows whenF(m;t) takes the
Landau form with (j2/2x)(m;t) being constantin m and t.
For more generald.1, the bulk functions have the follow
ing scaling forms:

W~m;t,0!'umud11Y6~m/Butub!, ~9!

~j2/2x!~m;t !'umu2hn/bZ6~m/Butub!, ~10!

in the simultaneous scaling limitt→06 with m→0, whereh
is the critical bulk correlation function exponent in standa
notation.

Specific choices for the bulk scaling functions,Y6(y) and
Z6(y), appropriate tod53, will be addressed later. First w
note that analyticity ofF(m;t) and j(m;t) in m and t
throughout the one-phase region of the phase diagram~ex-
cluding the critical point! implies that Y6(y) and Z6(y)
have the following expansion properties@10#. Analyticity of
F(m;t) acrosst50 for nonzerom ~critical isotherm! gives

Y6~y!5
A6uByu2(d11)

~22a!~12a!
1 (

n50

`

Y`,n ~61!nuyu2n/b,

~11!

as uyu→`, where a and A6 are thespecific-heatcritical
exponent and amplitudes in standard notation. Sim
expansions hold forZ6(y) except that the term containin
A6 is absent. Analyticity acrossm50 for t.0 ~critical
isochore! implies

Y1~y!5uyu2(d11)(
n51

`

Y0,2n y2n, as y→0. ~12!

A similar expansion holds forZ1(y) except that the
uyu2(d11) prefactor is replaced byuyuhn/b and the sum starts
at n50. Note thatY1(y) andZ1(y) contain onlyevenpow-
ers of y as a consequence of the assumed symme
F(2m)5F(m) andj(2m)5j(m). Finally, we assume the
existence ofasymptoticexpansions about the phase bounda
which leads to

Y2~y!'~y71!2(
n50

`

Y1,n~61!n~y71!n, ~13!

as y→616. Similar expansions hold forZ2(y) as y
→616 but without the factor of (y71)2 in front of the
sums.

Minimizing the functional given by Eqs.~5! to ~8!, such
that m(z)→mb as z→`, leads to the first integra
ṁL(m;t,h)521 subject to a boundary condition atz50.
2-2
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Then taking the scaling limit,z→` andj→` with x5z/j
finite, gives the scaling functions,P6(x), through

x5
B2n/b

j0
6 E

P6(x)

`

dyy2(11n/b)@Z6~y!/Y6~y!#1/2, ~14!

and the critical-isotherm scaling function,Pc(x), is deter-
mined by

x5E
Pc(x)

` @d~d11!/2#1/2 dyy2(11n/b)

@12~11d!y2d1dy2(11d)#1/2
. ~15!

Note that, within local-functional theory,Pc(x) depends
only on bulk critical exponents; bulk critical amplitudes a
scaling functions do not enter at all. Before presenting qu
titative d53 results obtained from these formulas, we fi
describe somegeneral properties ofP6(x) which follow
from local-functional theorywhenever Y6(y) and Z6(y)
satisfy the necessary analyticity requirements.

Short-distance behavior. The expansions ofY6(y) and
Z6(y) for largey, Eq. ~11!, substituted into Eq.~14! implies
that

P6~x!5x2b/n@c61a6x1/n1b6xd* 1a68 x2/n1o~x2/n!#
~16!

asx→0 whered* 5(22a)/n5min(d,4). From Eq.~15!, a
similar expansion follows forPc(x) but with the terms in
x1/n,x2/n replaced byxbd/n,x2bd/n. Also, on defining the uni-
versal numberUjªj0

1/j0
2 , we find thatc1 /c25Uj

2b/n ,
a1 /a252Uj

(12b)/n , a18 /a28 5Uj
(22b)/n , and b1 /b2

5Uj
d* 2b/nA1 /A2 ~this last ratio, involving bulk-specific-

heat amplitudes, being universal ford<4). Expansion~16!
is fully consistent with field-theoretic expectations@4#, the
term inxd* being a consequence of theshort-distance expan
sion @14#, and corresponds to the following expansion of t
boundary magnetization,m1(t)ªm(z50;t,0), for t→06:

m1~ t !5m1~0!1At1B6utu22a1A8t21 . . . ~17!

~which also follows directly from local-functional theory!
with B1 /B25A1 /A2 and the terms inA andA8 are part of
the analytic background. The leading singular term,utu22a,
was first conjected by Bray and Moore@15# but is now well
established using near-exact arguments@14,16#.

Large-distance behavior. Substituting Eq.~12! @respec-
tively Eq. ~13!# into Eq. ~14! for P1(x) @respectively
P2(x)#, and the equivalents forZ6(y), gives

P6~x!2P6~`!5 (
n51

`

P6,n
` e2nx, as x→`. ~18!

Although, in general,P2,n
` are nonzero forboth odd and

evenn, it is important to note thatP1,n
` 50 for all even n.

That P1(x) contains onlyodd powers ofe2x in its expan-
sion for largex appears not to have been noted before a
follows directly from bulkup-down symmetryalong the criti-
cal isochore. This observation has important implications
06510
n-
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the analysis of experimental data, placing additional c
straints on the approximants used forP1(x). The expansion
property of P1(x), which clearly holds within mean-field
theory, can also be understood from a diagramatic hi
temperature approach to thed53 Ising model@17#. Also, it
has been shown thatP1,2

` 50 to linear order ine @5#. From
Eq. ~15! it follows that Pc(x) has a similar expansion to tha
of P2(x) for largex ~containing both odd and even powe
of e2x).

To obtain quantitative predictions atd53 for P6(x),
Pc(x), and associated amplitudes, we need to substitute
Eqs.~14! and ~15! specific values for the bulk critical expo
nents along with suitable choices forY6(y) andZ6(y). We
represent the bulk scaling functions using the parame
models introduced by Schofield@18#. These have recently
been developed further@10,19# and are believed to give th
best available fits to bulk data and, by their very constr
tion, give scaling functions satisfying the required analytic
properties~11!, ~12!, and~13!. For our purposes the origina
‘‘linear’’ parametric model@18# was found to suffice. Atd
53 we takeb50.328 andn50.632 and a satisfactory fit to
the bulk amplitude relations, being properties of the bu
scaling functions, is provided by takingb251.30 anda2
50.28, in the notation of Ref.@19#, in the linear model. The
resultingP6(x) are shown in Fig. 1 and are plotted in com
parison to MC@5,7# and extrapolated one-loop RG resu
@4,7#. Strikingly, we find that the local-functional prediction
lie very close to the curves obtained from a splined-lea
square fit to the MC data@almost indistinguishable in the
case ofP1(x)#. Modifying the linear-model parameters,b2

and a2, in a way consistent with bulk data, hardly chang
the resulting plots forP6(x).

Numerical results for the associated surface amplitu
are displayed in Table I and compared to the results of o
theories @4–7# and experiment@8#. Again, we find close
agreement between the results of local-functional theory
MC simulations. For all these amplitudes, local-function

FIG. 1. Results of the local-functional calculation ofP6(x) at
d53 are plotted as~a! and compared to~b! Monte Carlo data,~c!
splined-least-square fit of MC data,~d! one-loop RG calculation
extrapolated tod53, and~e! mean field theory.
2-3
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theory can also be used to generate expansions ine. In al-
most all cases, the coefficients of the order-e terms were
found to agree with those calculated using the RG@4–6# to
within 1% @17#; e.g., forc1 , local-functional theory predicts
c15A220.96115e1O(e2) whereas from the RG one ha
c15A220.960 54e1O(e2).

The local-functional curve forPc(x), Eq. ~15!, is plotted
in Fig. 2 along with the mean-field result~4!. At d53, local-
functional theory predicts thatcc

n/b51.93 @20#, Pc,1
` 50.95

andgc50.71.
To conclude, using local free-energy functionals we ha

developed a comprehensive theory of critical adsorption
plicable to generald but particularly to the experimentall

TABLE I. Universal critical-adsorption amplitudes atd53 de-
termined using local-functional theory~LFT! and compared to the
results of Monte Carlo simulations~MC!; one-loop RG calculations
extrapolated toe51 ~RG!; interpolated results of Flo¨ter and
Dietrich ~FD!; and some experimental results~Expt.!. Also, for
comparison, the results of mean field theory~MFT! are displayed.

c1 c2 g1 g2 RF P1,1
` P2,1

` c1 /P1,1
`

LFT 0.857 1.214 0.679 0.574 2.3 1.601 0.679 0.54
MC 0.866 1.22 0.663 0.599 2.17 1.5 1.0 0.577
RG 0.717 1.113 0.581 0.438 2.60 1.621 0.44
FD 0.94 1.24 0.69 0.56 2.28
Expt. 0.79 1.12 0.599 0.502 2.34 0.96 0.57 0.75
MFT 1.414 2.0 0.707 1.0 1.0 2.828 2.0 0.50
06510
e
p-

important case ofd53. Not only are our results largely con
sistent with MC simulations but also, to first order ine, with
RG calculations giving credence to our nonperturbatived
53 predictions.
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FIG. 2. Results of the local-functional calculation ofPc(x) at
d53 plotted as~a! and compared to~b! mean field theory.
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