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Local-functional theory of critical adsorption
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Local-functional methods are applied to critical adsorption in three-dimensional Ising-like systems. The
universal order-parameter-profile scaling functidds(x), along the critical isochore) and phase boundary
(=), are calculated along with their associated universal amplitudes. Good agreement is found with the results
of Monte Carlo simulations. General propertiedRof(x) for small and large scaled distaneeare elucidated.
An order-parameter scaling functidRg(x), for critical adsorption along theritical isothermis introduced and
calculated.
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There has been much recent interest in the effects of dd-or dimensiord<4, wherev> 3, the adsorption diverges on
limiting boundaries on systems near their bulk critical pointsapproach to the critical point likd (t,0)~I.[t|?~" as't
of which the phenomenon afitical adsorptionis an impor- —0* and ford=4 (mean field theory where v=g, one
tant example. Consider, for instance, a uniafising) ferro-  finds I'(t,0)~ In|t| * ast—0.
magnet(or a system in the equivalent universality class such Since P.(x) are universal, various amplitudes extracted
as a binary fluid, etg.against a wall containing a symmetry- from P_.(x) at large and smak are also universal as well as
breaking fieldh;>0. Such a boundary tends to cause theintegrals involvingP- (x). Thus, withP. (x)~c. x #'* as
order parametefe.g., magnetizatiorm, or fluid density,p) x—0 and P.(x)—P.(®)=~P%, e as x—x [where
to increase over a distance of about the bulk correlatior¢|ear|y P_(*)=0 andP_(»)=1] we find universal num-
length, £, from the wall. In a seminal paper, Fisher and depersc, andP% ;. In addition, the integralf6]
Gennes[1] predicted that on approaching the bulk critical - -
point, whereé— oo, the order-parameter profile at large dis- B
tances from the wall attains a characteristic scaling form in- g+z:(,}_5)J [P.(X)—P.()]dx 3
volving bulk critical exponents which can be described by a - o -
universalscaling function, a situation referred to as critical
adsorption. This prediction has stimulated much experimen

EgI_Vé]ork [2] and theoreticalincluding Monte Carlp analysis I. viag.=(v—B)T. /Bé& . Finally, we have the univer-
We start by describing, in magnetic language, the mainsaI adsorption ‘f’lm.p“tl“'de ral_tlaq>::r_+/1“,. "
One can similarly define universal quantities along

guantities of interest in critical adsorption. Lei(z) be the . ; e
magnetization profile in the semi-infinite sample at a perpen'Ehe critical isotherm  Thus, we have m(zt=0,n)

~ -, +

dicular distance of from the wall with the bulk magnetiza- :?Tﬁ?ﬂ)’ﬁpg([g]g;n d Eif]e pz)rop:,r?ie\soof’ thew:r?ii/irsifcgzgling
: . e ~&,

tion, my(t,h), Q'Ye” by mb(t,h)._hmz._)%m(z). ' where t function, P.(x), for large and smalk, i.e., P(x)~c x 7'
=(T=Tc)/Tc, Tis the temperaturel. is its critical value, asx—0 andP.(x)—1~P?,e * asx—x, defines the uni-
and h is the applied bulk magnetic field. Nﬁear the critical yersal amplitudes, andPZ; . Furthermore, one can define a
point (both [t| and |h| smal), my(t,0)~B|t|” for t—0 universal numberg., through an expression identical to Eq.

(phase boundalfymb(tl,/g))=0 for all t>0 (critical isochorg; (3 except that the integrand is replacedmy(x)— 1. Along
and my(0,h) ~([h|/D)**sgnh for h—0 (critical isotherm.  he critical isotherm, the Gibbs adsorption diverges like
This then defines in standard notation the critical exponenty gy~ |h|(6-1/89 as h\,0* for d<4 and I'(Oh)

p andé, and amplitudes andD. Along the phase boundary | ~1 for d=4. Thenonuniversabmplituderl’, is related
and critical isochore, Fisher and de GenhElsproposed the to g, via g.= (v— B)DYT /¢,
following scaling law: Thus, for critical adsorption we have a number of univer-
‘t h=0)~Blt|AP.. N 50t (1 sal quaptities amenable to e_xperimental and th_eoretical in-

MEZLh=0)~Bl(°P.(Z¢) as z—=, =07 () vestigation. It is well established that mean field theory
where, throughouté= &(t,h) is the true correlation length, (d=4) predicts [3,6] that P.(x)=\2 cosectx,P_(x)
with £(t,0)~&:|t| ¥ ast—0*, and, with this choice of nor- =coth/2), with c,=+2, c_=2, P},=2y2, and
malization, P..(x) are universalscaling functions. Also of PZ;=2, and for the adsorption quantites we have

are also universal and related to the adsorption amplitudes

interest is the Gibbs adsorptioki(t,h), defined by g,=1//2,9_=1, andRy =1 (strictly speakingg. are only
. defined atd=4 in the sense of the limid—47). Along the
I'(th ::f m(z:t,h)—my(t.h)] dz. 2 critical isothermthe results of mean field theory. appear not
(th) 0 Lm )= me(th] @ to have been presented before but these are given as
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3.2 where &(m;t) and y(m;t) are, respectively, the bulk corre-
P(x)—1=— — (4) lation length and susceptibility of the homogeneous system
sint{x+sinh™1(/2)]- 2 at (m,t). The functionG(x) must beevenin x with G(0)
_ " =0 and is required to satisfy several desiderata as set out in
with c.=6, Pg,=612(y3- \2), andg.=3/2. Refs.[10,12. What is quite remarkable though, is that for

The purpose of this Rapid Communication is to go be-gemj.infiniteproblems the specific functional form 6i(x)
yond mean flelq theow_ and present the res_ul'ff5 of eXtensiVBoes not enter into any expressions obtained from minimiz-
calculations which provide a complete description of cnucaling Eq. (5) [10].
adsorption at the experimentally important dimensiondof Mean field theory @>4) follows whend(m:t) takes the
=3. The pioneering analysis of experimental data by Liu and gdau form with €2/2y)(m:t) being constantin m andt.

Fisher[3], based on approximants, was followed by furthergqr more generai>1, the bulk functions have the follow-
analysis[6—8] of other experiments. Renormalization group ing scaling forms:

(RG) studies of a semi-infinitey* field theory[4,5], carried

out to linear order ine:=4—d (i.e., one loop and extrapo- W(m;t,0)~|m|?* 1Y, (m/B|t|#), (9)
lated toe= 1, provide the onlypurely theoreticapredictions N
of P.(x) (and associated amplitugeat d=3 apart from (€2412x)(m;t)~|m|~ 7Bz, (m/BJt|#), (10)

Monte Carlo(MC) simulations of thed=3 Ising model5].
In this paper we use a method based on local free-energy the simultaneous scaling lintit-0* with m— 0, wherey

functionals of the type introduced by Fisher and Upitd@]. s the critical bulk correlation function exponent in standard
These are functionals ah(z), so constructed to incorporate notation.
nonclassicalcriticality as appropriate for dimensioms<4. Specific choices for the bulk scaling functiois, (y) and

The method isronperturbativeand can be applied directly to 7. (y), appropriate tal=3, will be addressed later. First we
d=3 without extrapolating, which is an important advantagenote that analyticity of®(m;t) and &m;t) in m and t
over field-theoreticak expansions. However, one can also throughout the one-phase region of the phase diagem
use these functionals to generate expansions tiius pro-  cluding the critical point implies thatY..(y) and Z. (y)
viding a useful cross-check with field theory. Indeed, resultshave the following expansion propertig]. Analyticity of
of previous applications were found to compare very welld®(m;t) acrosst=0 for nonzerom (critical isotherm gives
with field-theoreticale expansiong11,12 (usually within

about 1% for the coefficient of the orderterm). Also, for A.|By| (o1 o
Casimir-type problems, local-functional calculations applied Y.(y)= m+ 2 Yo (21 |y,

directly to d=2 gave results in excellent agreement with n=0 (11)
those obtained from conformal invariandd2,13. The

method is relatively easy to implement making it applicablegs |y| o, where @ and A, are thespecific-heatcritical

to situations which appear intractable when using other theayponent and amplitudes in standard notation. Similar

[

oretical techniques. ~ expansions hold foZ. (y) except that the term containing
The local-functional methoplL0] starts from the assertion A is absent Analyticity acrossm=0 for t>0 (critical
thatm(z) minimizes the followinglapproximatg functional:  jsochorg implies

f[m]: fo A(m!m;t!h)dz—'_fl(ml;hl! .. ')1 (5) Y+(y):|y|*(5+l)n§=:1 Y0,2ny2n* as y—>0 (12)

wherem:=dnv/dz andm;:=m(z=0). The surface contribu-
tion incorporates the symmetry-breaking surface figldiia
fi(mq;hy, ... )=—hymy+ ... as required for critical ad-
sorption. The integrandd(-) contains onlybulk quantities
and we use the choice considered in R&f)],

A similar expansion holds forZ, (y) except that the

ly| ~(°*1) prefactor is replaced byy|”"'# and the sum starts
atn=0. Note thaty , (y) andZ . (y) contain onlyevenpow-

ers of y as a consequence of the assumed symmetry,
O (—m)=d(m) and&(—m) = &(m). Finally, we assume the
existence ohsymptotieexpansions about the phase boundary
which leads to

A(m,m;t,h)={G[A(m;t,h)m]+1}W(m;t,h),  (6)
with ©
W(m;t,h) =@ (m;t) —d(my i) —h (m=my),  (7) Y= FDIZE Vaa(DED (09

where ®(m;t) is the bulk Helmholtz free energy density. 35 y— +1*. Similar expansions hold foZ_(y) as 'y
Note that the equatioA\W/om|,, =0 gives the bulk equation ., +1* pyt without the factor of ¢+ 1)? in front of the

of state. It is required that the combinatiom\ (m) bescale ~ SUmS.

free which is satisfied ifA(m) takes the form Minimizing the functional given by Eqg5) to (8), such
that m(z)—m, as z—x, leads to the first integral
A(m;t,h) = E(m;t)/V2x(m;H)W(m;t,h), (8  mA(m;t,h)=—1 subject to a boundary condition 2&0.
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Then taking the scaling limiz—o and é—oo with x=2/¢ ST
finite, gives the scaling function®,.. (x), through ‘| !

i \ —— (a) Local functional
o (b) Monte Carlo data

e (¢) MC least square

--=- (d) 1-loop RG

—-— (e) Mean field theory

BiV/B o
X=— f dyy B[z (y)IY.(y)]Y4 (19
& JPL(0

and the critical-isotherm scaling functioR(x), is deter-
mined by 3

f"” [8(6+1)/2]Y2 dyy (+v/8)
X: .
P[1—(1+ &)y o+ oy (1Ha712

15 2t

Note that, within local-functional theoryP.(x) depends !
only on bulk critical exponents; bulk critical amplitudes and
scaling functions do not enter at all. Before presenting quan-,
titative d=3 results obtained from these formulas, we first

0 0.5 1 1.5 2 25 3 3.5 4

describe somegeneral properties of P..(x) which follow
from local-functional theorywhenever Y.(y) and Z.(y)
satisfy the necessary analyticity requirements.

Short-distance behaviofThe expansions o¥ . (y) and
Z.(y) for largey, Eq.(11), substituted into Eq14) implies
that

P.(x)=x"A"c.+a x¥+b.x¥ +a,x¥"+o(x?)]
(16)

asx—0 whered* =(2— a)/v=min(d,4). From Eq.(15), a
similar expansion follows folP.(x) but with the terms in
x x?" replaced byx#%" x?£9"_ Also, on defining the uni-
versal numberU:=&,/&, , we find thatc, /c,=U§"B/”,
a+/a,=—U(§1_B%’”, al/a’=u@ A" and b, /b_
=U‘§’*"E"VA+ /A_ (this last ratio, involving bulk-specific-
heat amplitudes, being universal fd=4). Expansion(16)
is fully consistent with field-theoretic expectatiop4], the

term inx®" being a consequence of thkort-distance expan-

FIG. 1. Results of the local-functional calculation Bf (x) at
d=3 are plotted asa) and compared t¢b) Monte Carlo data(c)
splined-least-square fit of MC daté&]) one-loop RG calculation
extrapolated tal=3, and(e) mean field theory.

the analysis of experimental data, placing additional con-
straints on the approximants used fr (x). The expansion
property of P, (x), which clearly holds within mean-field
theory, can also be understood from a diagramatic high-
temperature approach to tke=3 Ising model[17]. Also, it

has been shown th&’ ,=0 to linear order ine [5]. From

Eq. (15) it follows that P;(x) has a similar expansion to that
of P_(x) for largex (containing both odd and even powers
of e7%).

To obtain quantitative predictions atd=3 for P.(x),
P.(x), and associated amplitudes, we need to substitute into
Egs.(14) and(15) specific values for the bulk critical expo-
nents along with suitable choices fgr.(y) andZ..(y). We
represent the bulk scaling functions using the parametric

sion[14], and corresponds to the following expansion of themodels introduced by Schofield8]. These have recently

boundary magnetizatiom, (t) :=m(z=0;t,0), fort—0~:
17

(which also follows directly from local-functional theory
with B, /B_=A, /A_ and the terms i\ andA’ are part of
the analytic background. The leading singular teftf?,” ¢,
was first conjected by Bray and Moof#5] but is now well
established using near-exact argumes 16|.

Large-distance behaviorSubstituting Eq.(12) [respec-
tively Eqg. (13)] into Eq. (14) for P.(x) [respectively
P_(x)], and the equivalents faZ..(y), gives

my(t)=my(0)+At+B.|t|2 *+A't?+ ...

Pt(x)—Pi(OO)=E P% e ™ asx—w. (18
n=1 '

©

Although, in generalP~  are nonzero forboth odd and
evenn, it is important to note thaP” =0 for all even n
That P_(x) contains onlyodd powers ofe™* in its expan-

been developed furth¢d0,19 and are believed to give the
best available fits to bulk data and, by their very construc-
tion, give scaling functions satisfying the required analyticity
properties(11), (12), and(13). For our purposes the original
“linear” parametric model[18] was found to suffice. At
=3 we takeB=0.328 andv=0.632 and a satisfactory fit to
the bulk amplitude relations, being properties of the bulk
scaling functions, is provided by taking?=1.30 anda,
=0.28, in the notation of Ref19], in the linear model. The
resultingP . (x) are shown in Fig. 1 and are plotted in com-
parison to MCJ[5,7] and extrapolated one-loop RG results
[4,7]. Strikingly, we find that the local-functional predictions
lie very close to the curves obtained from a splined-least-
square fit to the MC datdalmost indistinguishable in the
case ofP, (x)]. Modifying the linear-model parametets?
anda,, in a way consistent with bulk data, hardly changes
the resulting plots foP . (x).

Numerical results for the associated surface amplitudes
are displayed in Table | and compared to the results of other

sion for largex appears not to have been noted before andheories[4-7] and experimen{8]. Again, we find close

follows directly from bulkup-down symmetrglong the criti-

agreement between the results of local-functional theory and

cal isochore. This observation has important implications irfMC simulations. For all these amplitudes, local-functional
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TABLE I. Universal critical-adsorption amplitudes dt=3 de-
termined using local-functional theofyFT) and compared to the
results of Monte Carlo simulatio®C); one-loop RG calculations
extrapolated toe=1 (RG); interpolated results of Fter and
Dietrich (FD); and some experimental resultExpt,). Also, for
comparison, the results of mean field the@4fFT) are displayed.

Ci c_ [ 9- Re PI; PZ; ci/PY,
LFT 0.857 1.214 0.679 0.574 2.3 1.601 0.679 0.54
MC 0.866 1.22 0.663 0.599 2.17 1.5 1.0 0.577
RG 0.717 1.113 0.581 0.438 2.60 1.621 0.442
FD 094 124 0.69 0.56 2.28
Expt. 0.79 1.12 0.599 0.502 2.34 0.96 0.57 0.75
MFT 1.414 2.0 0.707 1.0 1.0 2.828 2.0 0.50

theory can also be used to generate expansiors In al-
most all cases, the coefficients of the ordeterms were
found to agree with those calculated using the RG6] to
within 1% [17]; e.qg., forc,. , local-functional theory predicts
c,=2-0.9611%+O(€?) whereas from the RG one has
c,=12-0.96054+ O(€?).

The local-functional curve foP(x), Eq. (15), is plotted
in Fig. 2 along with the mean-field resu#t). At d=3, local-
functional theory predicts that’’#=1.93 [20], P.,=0.95
andg.=0.71.
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(a) Local functional
—-— (b) Mean field theory

P (x)

FIG. 2. Results of the local-functional calculation Bf(x) at
d=3 plotted aga) and compared t¢b) mean field theory.

important case ofl=3. Not only are our results largely con-
sistent with MC simulations but also, to first orderdnwith
RG calculations giving credence to our nonperturbative
=3 predictions.
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